SSC CGL - 180623 GRAND TEST

HINTS AND SOLUTIONS

ANSWER KEY

1	(3)	26	(3)	51	(3)	76	(2)
2	(1)	27	(2)	52	(4)	77	(2)
3	(4)	28	(2)	53	(1)	78	(1)
4	(1)	29	(4)	54	(1)	79	(1)
5	(4)	30	(2)	55	(4)	80	(2)
6	(4)	31	(2)	56	(3)	81	(1)
7	(2)	32	(1)	57	(4)	82	(1)
8	(1)	33	(4)	58	(4)	83	(1)
9	(4)	34	(3)	59	(3)	84	(1)
10	(4)	35	(1)	60	(4)	85	(1)
11	(1)	36	(2)	61	(4)	86	(1)
12	(2)	37	(4)	62	(1)	87	(1)
13	(2)	38	(4)	63	(2)	88	(4)
14	(3)	39	(3)	64	(2)	89	(3)
15	(4)	40	(4)	65	(2)	90	(4)
16	(1)	41	(1)	66	(2)	91	(1)
17	(2)	42	(2)	67	(1)	92	(2)
18	(3)	43	(4)	68	(1)	93	(1)
19	(3)	44	(2)	69	(4)	94	(4)
20	(2)	45	(4)	70	(4)	95	(2)
21	(3)	46	(4)	71	(3)	96	(2)
22	(3)	47	(3)	72	(2)	97	(1)
23	(2)	48	(3)	73	(4)	98	(1)
24	(1)	49	(3)	74	(3)	99	(4)
25	(4)	50	(2)	75	(1)	100	(3)

1. (3) Option (1),
$$8-7+3\times5=35 \Rightarrow 7+8-3\times5=35$$

 $\Rightarrow 7+8-15 \neq 35$
Option (2), $7\times8+6-9=25 \Rightarrow 8\times7-6+9=25$
 $\Rightarrow 56-6+9\neq 25$
Option (3), $6+8\times2-7=0 \Rightarrow 6-7\times2+8=0$
 $\Rightarrow 6-14+8=0$
Option (4), $8\times2+7-6=9 \Rightarrow 7\times2-8+6=9$

Option (4),
$$8 \times 2 + 7 - 6 = 9 \Rightarrow 7 \times 2 - 8 + 6 = 9$$

 $\Rightarrow 14 - 14 \neq 9$

$$x : x^2 + 1$$

 $4 : (4)^2 + 1 \Rightarrow 4 : 17$
Similarly,
 $7 : (7)^2 + 1 \Rightarrow 7 : 50$.

3. (4) Nephron is the basic structural and functional unit of the kidney. Similarly, neron is the basic structural and functional unit of the Central Nervous System.

4. (1) J O K E \longrightarrow G L H B -3 \longrightarrow -3 \longrightarrow -3 \longrightarrow -3

Similarly,

1

5. (4) English is different from Kannada. But both are included in the class languages.

6. (4) Some professors may be researchers and vice-versa.
Some professors may be scientists and vice-versa.
Some researchers may be scientists and vice-versa.
Some professors who are researchers may be scientists.
Some researchers who are scientists may be professors.

- 7. (2) First Column $1 + 8 + 27 = 36 \Rightarrow 36 1^2 = 35$ Second Column 216 + 125 + 64 = 405 $\Rightarrow 405 - 2^2 = 404$ Third Column $343 + 512 + ? = 1575 + 3^2$ $\Rightarrow 855 + ? = 1584$ $\Rightarrow ? = 1584 - 855 = 729$.
- 8. (1) First figure $(11 \times 12) (6 \times 9) \Rightarrow 132 54 = 74$ Second figure $(14 \times 10) - (7 \times 8) \Rightarrow 140 - 56 = 84$

- 11. (1) $2.5 \times 4 + 40 \div 20 12$ 10 + 2 - 12 = 0
- 12. (2) $3 \xrightarrow{+7} 10 \xrightarrow{+7} 17$ $5 \xrightarrow{+7} 12 \xrightarrow{+7} 19$

$$35 \longrightarrow 35 \longrightarrow 35$$

- 13. (2) $A \xrightarrow{+2} C \xrightarrow{+2} E \xrightarrow{+2} G$ $I \xrightarrow{+1} J \xrightarrow{+2} L \xrightarrow{+1} M$ $O \xrightarrow{+2} Q \xrightarrow{+2} S \xrightarrow{+2} U$ $B \xrightarrow{+2} D \xrightarrow{+1} E \xrightarrow{+1} F$ $G \xrightarrow{+1} H \xrightarrow{+2} J \xrightarrow{+4} N$
- 14. (3) C is the father of B.
 A is the wife of C.
 B, E and F are sons of A and C.
 D is a girl.
 Male members ⇒ A, B, E and F.
- 15. (4) G A R N I S H
 R G A I N H S
 Similarly,

16. (1) $B \Rightarrow 01, 13, 20, 32, 44$ $E \Rightarrow 56, 68, 75, 87, 99$ $A \Rightarrow 03, 10, 22, 34, 41$ $K \Rightarrow 57, 69, 76, 88, 95$

Option	В	Е	A	K
(1)	44	75	22	88
(2)	44	.88	10	75
(3)	20	10	87	57
(4)	32	76	75	22

17. (2)
$$428 \Rightarrow 4 \times 2 = 8$$

 $338 \Rightarrow 3 \times 3 = \boxed{9}$
 $326 \Rightarrow 3 \times 2 = 6$
 $339 \Rightarrow 3 \times 3 = 9$

18. (3) Kidnap is different from other three words.

- 19. (3) $I \xrightarrow{-1} H \xrightarrow{+2} J$ $L \xrightarrow{-1} K \xrightarrow{+2} M$ $S \xrightarrow{+1} T \xrightarrow{-2} R$ $Q \xrightarrow{-1} N \xrightarrow{+2} P$
- 20. (2)

2

- 21. (3) There is no 'S' letter in the given word. Therefore, the word CONSCIENCE cannot be formed.
- 22. (3) Suppose the number of deer = dAnd, number of peacocks = pAccording to question d + p = 80(i) And, 4d + 2p = 200or, 2d + p = 100(ii) From equation (i) and (ii) d = 20

Therefore, number of peacocks = 80 - 20 = 60.

- 23. (2) Arrangement of words as per dictionary: 4. Convalesce
 - ↓
 3. Convenience
 - ↓ 2. Converge
 - ↓ 5. Converse
 - 1. Convince
- 24. (1) First Premise is Particular Affirmative (I-type).
 Second Premise is Universal Affirmative (A-type).
 All doctors are social workers.

Some social workers are politicians.

 $A + I \Rightarrow$ No Conclusion.

51. (3)

AB = Building = $10\sqrt{3}$ metre

PQ = 20 metre

BQ = x metre (let)

If $\angle APB = \theta$ then $\angle AQB = 90^{\circ} - \theta$

From $\triangle ABP$,

$$\tan \theta = \frac{AB}{BP} = \frac{10\sqrt{3}}{x+20} \qquad ...(i)$$

From $\triangle ABQ$, $tan(90^{\circ} - \theta) = \frac{AB}{BQ}$

$$\Rightarrow \cot \theta = \frac{10\sqrt{3}}{x}$$

By multiplying both equations,

$$\tan\theta.\cot\theta = \frac{10\sqrt{3}}{x+20} \times \frac{10\sqrt{3}}{x}$$

$$\Rightarrow$$
 x² + 20x = 10×10×3

$$\Rightarrow x^2 + 20x - 300 = 0$$

$$\Rightarrow$$
 x² + 30x - 10x - 300 = 0

$$\Rightarrow$$
 x(x+30)-10(x+30) = 0

$$\Rightarrow$$
 $(x-10)(x+30) = 0$

$$\Rightarrow$$
x=10, x≠-30

$$\therefore$$
 BP = 10 + 20 = 30 metre.

52. (4) $2\sin^2\theta + 3\cos^2\theta = 2\sin^2\theta + 2\cos^2\theta + \cos^2\theta$ = $2(\sin^2\theta + \cos^2\theta) + \cos^2\theta$

$$=2+\cos^2\theta$$

$$\therefore$$
 Least value = $2 + 0 = 2$

$$[\because \cos^2 \theta \ge 0]$$

...(ii)

OY is the bisector of \angle AOC.

OX is the bisector of /BOC,

$$\therefore \angle BOC = 2\angle COY$$

$$\therefore \angle AOC + \angle BOC = 2\angle COY + 2\angle COX = 180^{\circ}$$

$$\Rightarrow 2(\angle COX + \angle YOC) = 180^{\circ}$$

$$\Rightarrow \angle XOY = 90^{\circ}$$

$$\therefore \angle AOX + \angle XOY + \angle BOY = 180^{\circ}$$

$$\therefore \angle BOY = 180^{\circ} - 90^{\circ} - 20^{\circ} = 70^{\circ}$$

54. (1)
$$2-\cos^2\theta = 3\sin\theta.\cos\theta$$

Dividing by $\cos^2\theta$

$$\frac{2}{\cos^2\theta} - 1 = \frac{3\sin\theta\cos\theta}{\cos^2\theta}$$

$$\Rightarrow 2 \sec^2 \theta - 1 = 3 \tan \theta$$

$$\Rightarrow 2(1 + \tan^2 \theta) - 1 = 3 \tan \theta$$

$$\Rightarrow 2 \tan^2 \theta + 2 - 1 = 3 \tan \theta$$

$$\Rightarrow 2 \tan^2 \theta - 3 \tan \theta + 1 = 0$$

$$\Rightarrow 2 \tan^2 \theta - 2 \tan \theta - \tan \theta + 1 = 0$$

$$\Rightarrow 2 \tan \theta (\tan \theta - 1) - 1(\tan \theta - 1) = 0$$

$$\Rightarrow$$
 $(2 \tan \theta - 1)(\tan \theta - 1) = 0$

$$\Rightarrow \tan \theta = \frac{1}{2} \text{ or } 1$$
.

55. (4)
$$\sin \theta + \cos \theta = \sqrt{2} \cos(90^{\circ} - \theta)$$

$$\Rightarrow \sin \theta + \cos \theta = \sqrt{2} \sin \theta$$

On squaring,

$$\cos^2\theta + \sin^2\theta + 2\cos\theta \cdot \sin\theta = 2\sin^2\theta$$

$$\Rightarrow \cos^2 \theta = \sin^2 \theta - 2\cos \theta \cdot \sin \theta$$

On dividing by $\sin^2\theta$,

$$\cot^2 \theta = 1 - 2 \cot \theta$$

$$\Rightarrow \cot^2 \theta + 2 \cot \theta - 1 = 0$$

$$\therefore \cot \theta = \frac{-2 \pm \sqrt{4+4}}{2} = \frac{-2+2\sqrt{2}}{2} = \sqrt{2} - 1$$

or
$$-(\sqrt{2}+1)$$

56. (3) $x \sin^3 \theta + y \cos^3 \theta = \sin \theta \cdot \cos \theta$

$$\Rightarrow$$
 $(x \sin \theta) \cdot \sin^2 \theta + (y \cos \theta) \cos^2 \theta = \sin \theta \cdot \cos \theta$

$$\Rightarrow x \sin \theta . \sin^2 \theta + x \sin \theta . \cos^2 \theta = \sin \theta . \cos \theta$$

$$\Rightarrow x \sin \theta (\sin^2 \theta + \cos^2 \theta) = \sin \theta . \cos \theta$$

$$\Rightarrow x = \cos \theta$$

$$\therefore x \sin \theta = y \cos \theta$$

$$\Rightarrow \cos \theta . \sin \theta = y \cos \theta$$

$$\Rightarrow$$
 y = sin θ

$$\therefore x^2 + y^2 = \cos^2 \theta + \sin^2 \theta = 1$$

57. (4)

$$r_1 + r_2 = 13 \text{ cm}$$

 $r_2 - r_1 = 9 - 4 = 5 \text{ cm}$

PQ =
$$\sqrt{(\text{distance between centres})^2 - (r_2 - r_1)^2}$$
 $\Rightarrow x = 3 \text{ because}$
= $\sqrt{(13^2 - 5^2)} = 12 \text{ cm}$.
 \therefore Area of square = $12 \times 12 = 144 \text{ sq. cm}$.

$$\frac{(2n-4)\times 90^\circ}{(2n-4)\times 90^\circ} = \frac{360^\circ}{(2n-4)\times 90^\circ} \times 2$$

$$=\sqrt{(13^2-5^2)}=12$$
 cm.

58. (4)
$$\frac{(2n-4)\times 90^{\circ}}{n} = \frac{360^{\circ}}{n} \times 2$$
$$\Rightarrow (2n-4)\times 90^{\circ} = 2\times 360^{\circ}$$
$$\Rightarrow 2n-4=8$$
$$\Rightarrow 2n=4\Rightarrow n=6$$

59. (3) Angle traced by hour hand in an hour = 30°

$$\therefore$$
 Angle traced in $2\frac{1}{4}$ i.e. $\frac{9}{4}$ hours $=\frac{9}{4} \times 30^{\circ} = \frac{135^{\circ}}{2}$

Angle traced by minute hand in 60 minutes = 360°

∴ Angle traced in 15 minutes =
$$\frac{360}{60} \times 15 = 90^{\circ}$$

\ Required angle =
$$90^{\circ} - \frac{135^{\circ}}{2} = \frac{45^{\circ}}{2} = 22\frac{1}{2}^{\circ}$$

60. (4)
$$x = (0.08)^2$$
, $y = \frac{1}{(0.08)^2} = \frac{10000}{64} = 156.25$
 $z = (1 - 0.08)^2 - 1 = 1 + (0.08)^2 - 2 \times 0.08 - 1$
 $= (0.08)^2 - 2 \times 0.08$
Clearly, $z < x < y$

61. (4)
$$x^4 + \frac{1}{x^4} = 23$$
 $\left(x^2 + \frac{1}{x^2}\right)^2 - 2 = 23$

$$\Rightarrow \left(x^2 + \frac{1}{x^2}\right)^2 = 23 + 2 = 25$$

$$\therefore x^2 + \frac{1}{x^2} = 5$$

$$\therefore \left(x - \frac{1}{x}\right)^2 = x^2 + \frac{1}{x^2} - 2 = 5 - 2 = 3.$$

62. (1) $x = \sqrt{6 + \sqrt{6 + \sqrt{6 + \dots \infty}}}$

On squaring.

$$x^2 = 6 + \sqrt{6 + \sqrt{6 + \dots \infty}}$$

$$\Rightarrow x^2 = 6 + x$$

$$\Rightarrow$$
 x² - x - 6 = 0

$$\Rightarrow$$
 $x^2 - 3x + 2x - 6 = 0$

$$\Rightarrow$$
 x(x-3)+2(x-3)=0

$$\Rightarrow$$
 $(x-3)(x+2)=0$

$$\Rightarrow$$
 x = 3 because x \neq -2

63. (2)
$$\sec^4 \theta - \sec^2 \theta$$

$$= \sec^2 \theta (\sec^2 \theta - 1)$$

$$= (1 + \tan^2 \theta) (1 + \tan^2 \theta - 1) = \tan^2 \theta + \tan^4 \theta$$

64. (2)
$$\frac{1}{3+\sqrt{5}} = \frac{3-\sqrt{5}}{(3+\sqrt{5})(3-\sqrt{5})} = \frac{3-\sqrt{5}}{9-5} = \frac{3-\sqrt{5}}{4}$$

$$\therefore 3 - \frac{3 + \sqrt{5}}{4} - \frac{3 - \sqrt{5}}{4} = \frac{12 - 3 - \sqrt{5} - 3 + \sqrt{5}}{4} = \frac{6}{4} = \frac{3}{2}.$$

65. (2) If
$$a + b + c = 0$$

then $a^2 + b^2 + c^3 - 3abc = 0$.

66. (2) Points (a, b) and [(a + 3), (b + k)] will satisfy the equation.

$$x - 3y + 7 = 0$$

$$a - 3b + 7 = 0$$

and
$$a + 3 - 3(b + k) + 7 = 0$$

$$\Rightarrow a + 3 - 3b - 3k + 7 = 0$$

$$\Rightarrow a - 3b + 7 + 3 - 3k = 0$$

$$\Rightarrow 3 - 3k = 0 \Rightarrow 3k =$$

$$\Rightarrow$$
 k = $\frac{3}{3}$ = 1

$$[\because a = -3, b + 70]$$

...(i)

67. (1)
$$39 + 48 + 51 + 63 + 75 + 83 + x + 69 = 60 \times 8$$

$$\Rightarrow$$
 428 + x = 480

$$\Rightarrow$$
 x = 480 - 428 = 52.

68. (1)
$$:: 30\% \cong \text{Rs.}30$$

$$\therefore 100\% \cong Rs.100$$

$$\therefore$$
 New S.P. = $100 - 30 = 70$.

$$69. \quad (4) \quad \frac{\frac{2}{3}\pi r_1^3}{\frac{2}{3}\pi r_2^3} = \frac{6.4}{21.6}$$

$$\Rightarrow \frac{\pi r_1^3}{\pi r_2^3} = \frac{6.4}{21.6} = \left(\frac{4}{6}\right)^3 = \left(\frac{2}{3}\right)^3$$

$$\Rightarrow \frac{r_1}{r_2} = \frac{2}{3}$$

70. (4) If the number of females be x, then, number of males = 15000 - x

$$\therefore x \times \frac{10}{100} + (15000 - x) \times \frac{8}{100} = 16300 - 15000$$

$$\Rightarrow$$
 10x + 120000 - 8x = 1300 × 100

$$\Rightarrow$$
 2x = 130000 - 120000 = 10000

$$\Rightarrow$$
 x = 5000

71. (3) Relative speed = 11 - 10 = 1 kmph Distance covered in 6 minutes

$$=\frac{1000}{60}\times6$$
 metre = 100 metre

- \therefore Remaining distance = 200 100 = 100 metre
- 72. (2) 65) 75070 (1154

260

 \therefore Required number = 75070 + (65 - 60) = 75075.

73. (4) According to the question, $\frac{n}{2} + \frac{n}{4} + \frac{n}{5} + 7 = n$

$$\Rightarrow \frac{10n + 5n + 4n}{20} + 7 = n$$

$$\Rightarrow \frac{19n}{20} + 7 = n \Rightarrow n - \frac{19n}{20} = 7 \Rightarrow \frac{n}{20} = 7$$

$$\Rightarrow$$
 n = 20 × 7 = 140.

74. (3)
$$675 = 5 \times 5 \times 3 \times 3 \times 3 = 3^3 \times 5^2$$

 \therefore Required number = 5.

75. (1)
$$35 - 18 = 17$$

$$45 - 28 = 17$$

$$55 - 38 = 17$$

i.e. difference between the divisor and corresponding remainder is same.

LCM of 35, 45 and 55 = 3465

∴ Required number = 3465 - 17 = 3448.

- 76. (2) Here, indefinite article i.e. about a plane crash should be used. No particular incident is evident here.
- 77. (2) With a view to should be followed by gerund i.e. surveying.
- 78. (1) Here, time period is given. Hence, Past Perfect Continuous i.e. It had been lying should be used.
- 79. (1) **Dependent on** = needing somebody/ something in order to survive or be successful; affected or decided by something.
- 80. (2) **Take your leave** = to say good bye.
- 81. (1) The word **Abnormal (Adjective)** means: unusual, irregular; unnatural; different from what is usual.

Look at the sentence:

They thought his behaviour was abnormal.

82. (1) The word **Venal (Adjective)** means: corrupt; prepared to do dishonest or immoral thing in return for money. **Look at the sentence:**

Venal leaders should be denied vote.

- 83. (1) The word **Conjurer (Noun)** means : a person who performs magic tricks; magician.
- 84. (1) The word **Debacle (Noun)** means: a situation that is a complete failure and causes embarrassment.
- 85. (1) The word **Abusive (Adjective)** means : expressing praise or admiration.
- 86. (1) **Feel pulse** = to try to know someone's views.
- 87. (1) **Take somebody to task** = to criticize somebody strongly for something they have done.
- 88. (4) **Have/ keep something up your sleeve** = to keep a plan or an idea secret until you need to use it.
- 89. (3) Gentry is plural in number.
- 94. (4) **Rhythm** = a strong regular repeated pattern of sounds or movements.
- 95. (2) **Indigenous** = native; belonging to a particular place.